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Abstract

This study proposes a flexible parametric proportional odds regression model that incorporates
the exponentiated-Weibull distribution as a baseline for analyzing censored lifetime data. The
proposedmodel is referred to as the exponentiated-Weibull proportional odds regressionmodel.
This model provides greater flexibility in capturing a wider range of hazard shapes and survival
patterns. The paper discusses the theoretical framework as well as estimation methods for the
model parameters. Additionally, extensive simulation studies are conducted to evaluate the pro-
posed model’s performance under different scenarios. The results demonstrate that the model
effectively accommodates the unique characteristics of the exponentiated-Weibull distribution.
Furthermore, two real-world datasets are presented to illustrate and compare the model’s prac-
tical application and performance with existing proportional odds regression models. The find-
ings highlight the advantages of using the proposed model and its potential to enhance the
analysis of survival data and capture complex survival patterns.
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1 Introduction

The proportional odds (PO) model, also known as the cumulative odds model or the ordinal
logistic regression model, is a versatile and intuitive framework for analyzing ordinal response
variables, as demonstrated in [2, 6]. It has demonstrated exemplary performance in many ap-
plications and assumes that the cumulative probabilities of each response category follow a PO
structure. This indicates that the influence of covariates remains unchanged over time [24, 30].
Regarding probability distributions, they serve as the foundation for survival analysis andmay be
categorized as nonparametric, semiparametric, or parametric [8]. The Cox proportional hazard
(PH) model is commonly used to analyze time-to-event data. However, including too many pre-
dictors in the model can lead to complications. To identify key genes and improve classification
accuracy, a new method for selecting tuning parameters has been proposed [1, 9].

The parametric survival models are more valuable and efficient for handling various cen-
sored data if the distribution assumption is correct [22]. Yang and Prentice [29] developed semi-
parametric inference in the PO regression model. Royston and Parmar [24] presented parametric
PH and POmodels for censored data, applying to predictivemodeling and the estimation of treat-
ment effects. Hsieh and Chen [10] proposed twomethods for assessing the regression parameters
for the PH and PO models using dependent truncated data. Vieira et al. [26] created a PO model
using log-logistic and discrete Weibull distributions as foundational models. Additionally, Muse
et al. [21] proposed a parametric framework of hazard-based and odds-based regression models
specifically for analyzing right-censored survival data. Mahanta and Hazarika [16] developed
a new multivariate PO frailty model by using a Weibull hazard function (HF) in the context of
the Bayesian mechanism. Zhu et al. [31] examined the efficient odds ratio estimation for the PO
model with censored time-lagged outcomes. Wang and Wang [27] has highlighted the computa-
tional complexity and inefficiency of the PO model with right-censored data. Huang et al. [11]
discussed the efficient estimation and inference in the POmodel for survival data. Nonparametric
inference under right-censored data and under interval-censored survival data are discussed by
[3, 4], respectively.

To model survival data using a parametric approach, choose a suitable baseline distribution
that captures relevant observations’ properties [25]. Traditionally, logistic, Weibull, or log-normal
distributions have been employed as baseline distributions. However, these distributions may
not adequately capture the heterogeneity and complexity of survival patterns and hazard shapes
observed in real-world scenarios [28].

To address these limitations, there is a growing need for flexible extensions of PO models,
which are capable of capturing amore comprehensive range of survival patterns. Integrating these
distributions can improve the model’s capacity to reflect various hazard shapes and the impact of
covariates, resulting in more precise and informative outcomes.

Motivated by these considerations, this paper proposes a flexible PO regression model by us-
ing the exponentiated-Weibull (EW) distribution as a baseline distribution. The proposed model
is called the exponentiated-Weibull proportional odds (EWPO) regression model. The EW dis-
tribution is a generalization of the Weibull distribution by incorporating an additional shape pa-
rameter [19]. The weighted likelihood estimationmethod for the EWdistribution parameters was
developed to provide accurate estimates, especially when the dataset contains contamination [7].
Bashir et al. [5] developed the bounded EW (BEW) distribution, designed to model datasets with
support in the unit interval [0, 1]. A novel extension of the PHsmodel has been proposed by Ishag
et al. [13], which incorporates the EW distribution to model the baseline HF. This new model
offers greater flexibility in capturing various shapes of failure rates and can accommodate both
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monotonic and non-monotonic hazard patterns.

The EW distribution provides greater flexibility for modeling survival data, allowing for a
diverse range of hazard rate (HR) shapes, such as monotonically increasing, decreasing, bathtub-
shaped, and unimodal configurations, as demonistrated in [12, 15]. By incorporating this distri-
bution into the PO framework, we contribute to ordinal regression and survival analysis by in-
troducing a novel and versatile approach for analyzing ordinal response variables with complex
hazard structures. This extension expands the applicability of the POmodel to a broader range of
research domains. Additionally, it provides a valuable tool for researchers seekingmore profound
insights into the relationships between covariates and ordinal outcomes.

The paper is organized as follows: Section 2 offers an overview of the PO model. Section 3
introduces the EW distribution and its theoretical background. In Section 4, the proposed PO
regression model is presented. Section 5 focuses on the estimation and inference procedures for
the proposed model. Section 6 presents a simulation study aimed at assessing the model’s per-
formance. The application of the model to censored real-world datasets is illustrated in Section 7.
Finally, Section 8 summarizes the findings and presents some directions for future research.

2 The PO Regression Model

The proportional odds (PO) model was first introduced by Bennett [6] and is a widely used
regression framework for analyzing ordinal response variables. According to Bennett [6], the PO
model is comparable to Cox’s PH model and can be utilized in similar situations. The multiplica-
tive term exp(βx

′
) likewise provides the regression framework, but at this point, it is modeling

the odds function R(t) with the corresponding baseline R0(t) for an initial level. The assumption
of converging death rates given two individuals with different covariate values is analogous to
assuming a constant odds ratio (OR) for the same individuals. The odds function (OF) can be
written as follows,

R(t;β, x) =
F (t|β, x)

1− F (t|β, x)
= R0(t) exp(βx

′
), (1)

where R0(t) is the baseline odds function. The associated derivative of the odds function is given
as follows,

r(t;β, x) = r0(t) exp(βx
′
), (2)

where r0(t) is the baseline derivative odds function.

The survival function (SF) is expressed by,

S(t;β, x) =
1

1 +R0(t) exp(βx
′)
. (3)

The HR function (HRF) can be written as follows,

h(t;β, x) =
r0(t) exp(βx

′
)

1 +R0(t) exp(βx
′)
. (4)

The probability density function (PDF) can be written as follows,

f(t;β, x) =
r0(t) exp(βx

′
)

[1 +R0(t) exp(βx
′)]

2 . (5)
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The OR, when compared to any two individuals, such as (x1 and x2), can be written as follows,

OR(x1, x2, β) =
h0(t) exp (β x

′

1)

h0(t) exp (β x
′
2)

= exp
[
β(x

′

1 − x
′

2)
]
. (6)

3 The EW Distribution

The baseline parametric distribution plays a crucial role in capturing the diverse HR shapes of
the PH model. This paper offers an overview of the EW distribution, which is both flexible and
widely utilized in survival analysis. The EW distribution serves as a generalization of the Weibull
distribution by incorporating an additional shape parameter [19]. The EW regression model for
time-to-event data, within the framework of the AFT model, was developed by [15]. The EW
distribution has several advantages over other parametric distributions, as it can accommodate a
broad range of shapes and various survival patterns [23, 13]. Many conventional distributions
that fit within the PH framework, such as the exponential, Gompertz, and Weibull distributions,
struggle to model unimodal and bathtub-shaped HRs. Therefore, exploring distributions that can
effectively manage both monotonic and non-monotonic HRs is a worthwhile pursuit.

Consider a random variable T that follows the exponentiated-Weibull (EW) distribution. The
PDF, HRF, cumulative distribution function (CDF), SF, and cumulative HRF (CHRF) of T are
defined as follows:

The PDF of the EW has the form,

f(t) = ρλυ(λt)ρ−1 (1− exp(−(λt)ρ))
υ−1

exp(−(λt)ρ), t > 0. (7)

The HRF is given by,

h(t) =
ρλυ(λt)ρ−1(1− exp(−(λt)ρ))υ−1 exp(−(λt)ρ)

1− (1− exp(−(λt)ρ))υ
. (8)

The CDF of the EW model reduces to

F (t) = (1− exp(−(λt)ρ))υ. (9)

The SF takes the form,

S(t) = 1− (1− exp(−(λt)ρ))υ. (10)

The CHRF of the EW model is

H(t) = − log(1− (1− exp(−(λt)ρ))υ). (11)

The OF of the EW distribution and its derivative are defined by,

R(t) =
F (t)

S(t)
= (1− exp(−(λt)ρ))υ − 1 (12)

and

r(t) =
dR(t)

d(t)
=

h(t)

S(t)
= ρλυ(λt)ρ−1(1− exp(−(λt)ρ))υ−1 exp(−(λt)ρ). (13)

where ρ and υ are positive shape parameters and λ is a positive scale parameter.

It is important to note that setting υ = 1 simplifies the EW distribution to the Weibull distribu-
tion. Mudholkar and Srivastava [18] demonstrated that the HRF exhibits the following character-
istics:

792



M. A. S. Ishag et al. Malaysian J. Math. Sci. 19(3): 789–810(2025) 789 - 810

(i) it is monotone increasing when ρ ≥ 1 and ρυ ≥ 1,

(ii) it is monotone decreasing when ρ ≤ 1 and ρυ ≤ 1,

(iii) it is unimodal when ρ < 1 and ρ, υ > 1,

(iv) it is bathtub-shaped when ρ > 1 and ρυ < 1.

Figure 1 illustrates the HRF shapes of the EW model, which accommodate constant, increasing,
decreasing, bathtub, and unimodal.

Figure 1: Demonstrate the shapes of the HRF for the EW distribution using various scale and shape parameter values.

4 The Proposed EWPO Regression Model

The proposed PO regression model can be developed by incorporating the covariates into the
EW (ρ, λ, υ) distribution. The OF of the EWPO regression model is

REWPO(t;x) = R0(t) exp(βx
′
) = [(1− exp(−(λt)ρ))υ − 1] exp(βx

′
). (14)

The first derivative of the OF reduces to

rEWPO(t;x) = r0(t) exp(βx
′
) = ρλυ(λt)ρ−1(1− exp(−(λt)ρ))υ−1 exp(−(λt)ρ) exp(βx

′
). (15)

The HRF, SF, and CHRF of the EWPO model are defined as follows,

hEWPO(t;x) =
r0(t) exp(βx

′
)

1 +R0(t) exp(βx
′)

=
ρλυ(kt)ρ−1(1− exp(−(λt)ρ))υ−1 exp(−(λt)ρ) exp(βx

′
)

1 + [(1− exp(−(λt)ρ))υ − 1] exp(βx′)
,

(16)

SEWPO(t;x) = S(t|β, x) = 1

1 +R0(t) exp(x
′β)

=
1

1 + [(1− exp(−(λt)ρ))υ − 1] exp(βx′)
,

(17)
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and

HEWPO(t;x) = − log

[
1

1 + [(1− exp(−(λt)ρ))υ − 1] exp(βx′)

]
. (18)

5 Estimation of Parameters

In this section, the maximum likelihood (ML) estimation is applied to estimate the parameters
of the EWPO model. Let n independent individuals have lifetimes, say, Ti, censoring time Ci

for individual i, and the covariate of interest Xi. Assuming the data are subjected to the right
censoring, then it is found that ti = min(Ti, Ci), refers to the observed time of the occurrence, and
δi = I(Ti, Ci) refers the censorship indicator based on the observed data.

Assuming that the censored observations for individual i are represented as (ti, δi, xi), where
i = 1, 2, 3, . . . , n, the likelihood function for the EWPO model is expressed as follows,

L(t;ϕ, β) =

n∏
i=1

[S(ti;ϕ, β, xi)]
1−δi [f(ti;ϕ, β, xi)]

δi =

n∏
i=1

[
S(ti;ϕ, β, xi) [h(ti;ϕ, β, xi)

]δi
,

=

n∏
i=1

[
[S(ti;ϕ, β, xi)]

1−δi [
h(ti;ϕ, β, xi

S(ti;ϕ, β, xi)

]δi
=

n∏
i=1

[
r(ti;ϕ, β, xi)

1 +R(ti;ϕ, β, xi)

]δi 1

1 +R(ti;ϕ, β, xi)

=

n∏
i=1

[
r0(t) exp(βx

′

i)

1 +R0(t) exp(βx
′
i)

]δi 1

1 +R0(t) exp(βx
′
i)
,

(19)

where ϕ = (ρ, λ, υ) represents a vector of parameters of the baseline distributions, xi is a covariate,
and β refers to regression coefficients. Based on (19), the log-likelihood function for a parametric
EWPO regression model can be written as,

ℓ(t;ϕ, β) =

n∑
i=1

δi [log(h0(ti;ϕ, β, xi))]−
n∑

i=1

H0(ti;ϕ, β, xi). (20)

Using the HRF and CHRF in (16) and (18), respectively, the log-likelihood function for the EWPO
regression model simplifies to,

ℓ(t;ϕ, β) =

n∑
i=1

δi

[
log

(
ρλυ(λti)

ρ−1(1− exp(−(λti)
ρ))υ−1 exp(−(λti)

ρ) exp(βx
′

i)

1 + [(1− exp(−(λti)ρ))υ − 1] exp(βx
′
i)

)]
(21)

−
n∑

i=1

[
1

1 + [(1− exp(−(λti)ρ))υ − 1] exp(βx
′
i)

]
. (22)

In this case, let us assume that, wi = 1− exp(−(λti)
ρ), ci = exp(−(λti)

ρ) and qi = exp(βx
′

i), then
(21) reduces to:

ℓ(t;ϕ, β) =

n∑
i=1

δi

[
log

(
ρλυ(λti)

ρ−1(wi)
υ−1(ci)(qi)

1 + [qiwυ
i − qi]

)]
−

n∑
i=1

[
1

1 + [qiwυ
i − qi]

]
. (23)
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To obtain the maximum likelihood estimators φ̂ = (ρ̂, λ̂, υ̂) and βˆ, (23) can be maximized directly
with respect to ρ, λ, υ and β using theNewton-Raphson optimizationmethod. The first derivatives
of ℓ(ϕ, β; t) are expressed as follows:

∂ℓ(ϕ)

∂ρ
= log (λ)

(
n∑

i=1

δi
1 + qi (wi)

υ − qi

)
+

(
n∑

i=1

δi log (ti)

1 + qi (wi)
υ − qi

)

+

(
n∑

i=1

δi
ρ(1 + qi (wi)

υ − qi)

)
,

(24)

∂ℓ(ϕ)

∂υ
=

n∑
i=1

δi

(
ρλρtρ−1

i wυ−1
i ciqi + ρυλρtρ−1

i wυ−1
i log (wi) ciqi

)
λ−ρt1−ρ

i w−υ+1
i

ρυciqi (1 + qi (wi)
υ − qi)


−

n∑
i=1

δi log
(
ρυλρtρ−1

i wυ−1
i ciqi

)
qi (wi)

υ
log (qi (wi))

(1 + qi (wi)
υ − qi)

2


+

n∑
i=1

(
qi (wi)

υ
log (qi (wi))

(1 + qi (wi)
υ − qi)

2

)
,

(25)

∂ℓ(φ)

∂λ
=

n∑
i=1

(
δiρ

λ (1 + qi (wi)
υ − qi)

)
, (26)

and

∂ℓ(φ)

∂β
=

n∑
i=1

(
δi

qi (1 + qi (wi)
υ − qi)

)
+

n∑
i=1

δi log
(
ρυλρtρ−1

i wυ−1
i ciqi

)
(1 + qi (wi)

υ − qi)
2


−

n∑
i=1

(
1

(1 + qi (wi)
υ − qi)

2

)
.

(27)

The second derivatives of ℓ(ϕ, β; t) are given as follows,

∂2ℓ(ϕ)

∂ρ2
=

n∑
i=1

(
− δi
ρ2 (1 + qi (wi)

υ − qi)

)
, (28)

∂2ℓ(ϕ)

∂υ2
=

n∑
i=1

(
−qi (wi)

υ log (qi (wi))
2 υ2 (qi (wi)

υ − 1 + qi) log
(
ρυ λρtρ−1

i wυ−1
i ciqi

)
υ2 (1 + qi (wi)

υ − qi)
3

υ2 (1 + qi (wi)
υ − qi)

3

)

+

n∑
i=1

 (1 + qi (wi)
υ − qi)

((
1

2
+
(
υ2 log (wi) + υ

)
log (qi (wi))

)
qi (wi)

υ − qi
2

+
1

2

)
(
υ2 (1 + qi (wi)

υ − qi)
3
)
δi


−

(
n∑

i=1

(
−qi (wi)

υ log (qi (wi))
2 (qi (wi)

υ − 1 + qi)

(−1− qi (wi)
υ + qi)

3

))
,

(29)

∂2ℓ(φ)

∂λ2
=

n∑
i=1

(
− δiρ

λ2 (1 + qi (wi)
υ − qi)

)
, (30)
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∂2ℓ(φ)

∂β2
=

n∑
i=1

(
− δi
q2i (1 + qi (wi)

υ − qi)

)
+

n∑
i=1

(
2δi

qi (1 + qi (wi)
υ − qi)

2

)

+

n∑
i=1

2δi log
(
ρυ λρtρ−1

i wυ−1
i ciqi

)
(1 + qi (wi)

υ − qi)
3

−

(
n∑

i=1

2

(1 + qi (wi)
υ − qi)

3

)
,

(31)

∂2ℓ(φ)

∂ρ∂λ
=

n∑
i=1

δi
(1 + qi (wi)

υ − qi)λ
, (32)

∂2ℓ(φ)

∂υ∂λ
=

n∑
i=1

(
−δiρqi (wi)

υ
log (qi (wi))

λ (1 + qi (wi)
υ − qi)

2

)
, (33)

∂2ℓ(φ)

∂ρ∂υ
=

n∑
i=1

(
−δiqi (wi)

υ
log (qi (wi)) (ρ log (ti) + ρ log (λ) + 1)

ρ (1 + qi (wi)
υ − qi)

2

)
, (34)

∂2ℓ(φ)

∂β∂υ
=

n∑
i=1

δi

(
ρ λρtρ−1

i wυ−1
i ciqi + ρυ λρtρ−1

i wυ−1
i log (wi) ciqi

)
λ−ρt1−ρ

i w1−υ
i

ρυciqi (1 + qi (wi)
υ − qi)

2


−

n∑
i=1

2δi log
(
ρυ λρtρ−1

i wυ−1
i ciqi

)
qi (wi)

υ
log (qi (wi))

(1 + qi (wi)
υ − qi)

3


−

n∑
i=1

(
δiqi (wi)

υ
log (qi (wi))

qi (1 + qi (wi)
υ − qi)

2

)
+

n∑
i=1

(
2qi (wi)

υ
log (qi (wi))

(1 + qi (wi)
υ − qi)

3

)
,

(35)

∂2ℓ(φ)

∂β∂λ
=

n∑
i=1

δiρ

λ (1 + qi (wi)
υ − qi)

2 , (36)

and

∂2ℓ(φ)

∂β∂ρ
=

n∑
i=1

δi (ρ log (ti) + ρ log (λ) + 1)

ρ (1 + qi (wi)
υ − qi)

2 . (37)

6 Simulation Study

This section provides a simulation study to illustrate the inferential characteristics of the pro-
posed EWPO regression model. The Akaike information criterion (AIC) is obtained to show how
to select the best models that accurately capture the basic HR shapes and the impact of censored
percentages on the model characteristics.

Assuming the EWPO regression model in (16). The covariates are considered: two binary
covariates (x1 and x3) are generated from the Bernoulli distribution with a probability of 0.5, and
another continuous covariate (x2) is generated using the standard normal distribution.
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The inverse transform function of the EW distribution is utilized to generate survival times,
allowing for the accommodation of all fundamental HR shapes.

Let us recall the CHRF of the EW model, which is given by,

H(t; ρ, λ, υ) = − log

[
1− (1− e−(λt)ρ)υ

]
. (38)

The inverse of the CHRF follows as,

H−1(t; ρ, λ, υ) = −
log

[
(e−t − 1)

1
υ − 1

] 1
ρ

λ
. (39)

The simulation study concentrated on evaluating the performance and accuracy of the proposed
model’s estimators, specifically assessing the average bias (AB), standard error (SE), and mean
squared error (MSE). The simulation’s findings were derivedwith 100, 300, 500, and 2000 samples
for each parameter value, with approximately 30% and 20% censoring, respectively.

6.1 Simulation scenarios

Four simulation scenarios are conducted to evaluate the performance of the proposed EWPO
model and compare it with othermodels, such as theWPO and LLPO regressionmodels, based on
differentHRFs, including increasing, decreasing, bathtub, andunimodal. The goal is to investigate
how the HR shape specification affects the inferential aspects of the PO model. The lifetime data
in the following four scenarios are generated using the EW model.

Scenario 1: Increasing HRF
The lifetime data in this scenario are obtained via the EWmodel using the param-
eter values for ρ = 1.65, λ = 1.20, and υ = 1.0. The censored data are generated,
assuming that administrative censoring Tc at different time point values,

(i) Tc = 4 and (ii) Tc = 7,
which resulted in approximately 30% and 20% censoring, respectively.

Scenario 2: Decreasing HRF
The lifetime data in this scenario are obtained via the EWmodel using the param-
eter values for ρ = 0.70, λ = 0.60, and υ = 1.0. The censored data are generated,
assuming that administrative censoring Tc at different time point values,

(i) Tc = 14 and (ii) Tc = 8,
which resulted in approximately 20% and 30% censoring, respectively.

Scenario 3: Bathtub HRF
The lifetime data in this scenario are obtained via the EWmodel using the param-
eter values for ρ = 4, λ = 7, and υ = 0.08. The censored data are generated,
assuming that administrative censoring Tc at different time point values,

(i) Tc = 7 and (ii) Tc = 3,
which resulted in approximately 20% and 30% censoring, respectively.

Scenario 4: Unimodel HRF
The lifetime data in this scenario are obtained via the EWmodel using the param-
eter values for ρ = 0.15, λ = 0.00006, and υ = 40. The censored data are generated,
assuming that administrative censoring Tc at different time point values
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(i) Tc = 12 and (ii) Tc = 5,
which resulted in approximately 20% and 30% censoring, respectively.

6.2 Simulation results

Table 1 shows the results for the EWPO regression model, which includes the mean estimate
(estimate), SE, AB, MSE, and confidence interval (CI) for the ML approach. The averages of the
estimates are similar, and both the SE and MSE tend to decrease with larger sample sizes. Fur-
thermore, as the sample sizes increase, the estimates for all assessed parameters show improved
performance.

Table 1: Simulation outcomes including the true values, estimates, SE, AB, MSE, and 95% CI for the parameters of the for EWPO regression
model.

n = 100
20% Censoring 30% Censoring

Parameter True Estimate SE AB MSE CI 95 % Estimate SE AB MSE CI 95 %

β1 0.25 0.323 0.354 0.073 0.042 (-0.371, 1.017) 0.312 0.354 0.062 0.035 (-0.382, 1.006)
β2 0.35 0.316 0.138 -0.033 0.022 (0.046, 0.587) 0.311 0.137 -0.039 0.026 (0.042, 0.579)
β3 0.45 0.997 0.363 0.547 0.792 (0.286, 1.709) 0.970 0.363 0.521 0.740 (0.259, 1.682)
λ 1.20 0.904 0.349 -0.296 0.622 (0.220, 1.588) 0.795 0.363 -0.404 0.807 (0.084 , 1.507)
ρ 1.65 1.250 0.376 -0.400 1.159 (0.513, 1.987) 1.119 0.356 -0.531 1.469 (0.422 , 1.817)
υ 1.00 1.529 0.755 0.530 1.340 (0.050, 3.010) 1.810 0.978 0.811 2.279 (-0.106, 3.728)

n = 300
20% Censoring 30% Censoring

Parameter True Estimate SE AB MSE CI 95 % Estimate SE AB MSE CI 95 %

β1 0.25 0.632 0.202 0.383 0.338 (0.237, 1.028) 0.643 0.203 0.394 0.352 (0.246, 1.041)
β2 0.35 0.349 0.075 -0.001 0.001 (0.202, 0.496) 0.353 0.075 0.003 0.002 (0.206, 0.500)
β3 0.45 0.942 0.203 0.493 0.686 (0.545, 1.340) 0.958 0.204 0.509 0.717 (0.559, 1.359)
λ 1.20 1.074 0.187 -0.126 0.286 (0.708, 1.441) 1.177 0.202 -0.022 0.053 (0.782, 1.573)
ρ 1.65 1.307 0.182 -0.342 1.013 (0.951, 1.664) 1.460 0.242 -0.190 0.590 (0.986, 1.935)
υ 1.00 1.499 0.336 0.500 1.250 (0.841, 2.159) 1.290 0.320 0.290 0.664 (0.663, 1.917)

n = 500
20% Censoring 30% Censoring

Parameter True Estimate SE AB MSE CI 95 % Estimate SE AB MSE CI 95 %

β1 0.25 0.276 0.155 0.027 0.014 (-0.027, 0.581) 0.383 0.156 0.133 0.084 (0.077, 0.689)
β2 0.35 0.415 0.058 0.065 0.050 (0.302, 0.529) 0.470 0.057 0.120 0.099 (0.359, 0.582)
β3 0.45 0.447 0.156 -0.003 0.002 (0.142, 0.753) 0.719 0.158 0.270 0.316 (0.410, 1.029)
λ 1.20 0.863 0.144 -0.337 0.695 (0.581, 1.145) 1.095 0.155 -0.104 0.239 (0.792, 1.400)
ρ 1.65 1.210 0.142 -0.439 1.257 (0.932, 1.489) 1.449 0.186 -0.200 0.620 (1.085, 1.814)
υ 1.00 1.648 0.337 0.649 1.718 (0.988, 2.309) 1.278 0.251 0.279 0.635 (0.787, 1.771)

The key finding from Scenario 1, as demonstrated in Tables 2 and 3, is the significant advan-
tages of the proposed EWPO model over others. This is not just a marginal improvement but
a clear and substantial advancement in hazard modeling. The lower AIC values of the EWPO
model, which indicate its superior performance, are a testament to this. The SE, AB, and MSE
values further reinforce this, showing that our model consistently outperforms the others. The
impact of sample size and censoring percentage on the model’s accuracy is also crucial to the
research. As the censoring percentage increased, the proposed EWPOmodel consistently outper-
forms the WPO and LLPO models. Figure 2 shows that all the models are equally integrated into
the increasing HRF, but in the case of heavy censoring, our proposed model stood out as the best
performer, demonstrating its robustness and adaptability.
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Table 2: Simulation outcomes for Scenario 1 (increasing HRF) with n = 100 and approximately 20% and 30% censoring respectively to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.275 0.357 0.025 0.013 0.818 0.359 0.569 0.608
EWPO β2 0.35 0.323 0.127 -0.026 0.018 0.165 0.150 -0.184 0.095

β3 0.45 -0.207 0.350 -0.657 0.159 152.892 0.687 0.354 0.237 0.270 146.320
λ 1.20 0.453 0.274 -0.746 1.235 0.851 0.379 -0.348 0.715
ρ 1.65 0.905 0.265 -0.745 1.904 1.165 0.388 -0.484 1.364
υ 1.00 2.543 1.554 1.543 5.471 1.777 0.963 0.777 2.161

β1 0.25 1.088 0.353 0.838 1.122 1.547 0.363 1.297 2.333
WPO β2 0.35 0.342 0.128 -0.007 0.005 0.113 0.157 -0.237 0.110

β3 0.45 0.694 0.342 0.244 0.280 280.394 1.364 0.356 0.914 1.658 249.54
λ 1.20 1.550 0.173 0.350 0.963 1.808 0.184 0.608 1.831
ρ 1.65 1.263 0.112 -0.386 1.126 1.417 0.129 -0.232 0.714

β1 0.25 1.109 0.353 0.860 1.170 1.564 0.365 1.314 2.386
LLPO β2 0.35 0.320 0.126 -0.029 0.020 0.093 0.157 -0.256 0.114

β3 0.45 0.707 0.343 0.257 0.298 283.356 1.371 0.358 0.921 1.680 251.549
λ 1.20 1.142 0.149 -0.057 0.136 1.411 0.169 0.211 0.553
ρ 1.65 1.574 0.134 -0.075 0.243 1.663 0.144 0.013 0.046

Table 3: Simulation outcomes for Scenario 1 (Increasing HRF) with n = 2000 and approximately 20% and 30% censoring, respectively, to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.385 0.077 0.135 0.086 0.396 0.078 0.146 0.095
EWPO β2 0.35 0.564 0.031 0.214 0.196 0.575 0.031 0.225 0.209

β3 0.45 0.681 0.078 0.231 0.261 3119.944 0.699 0.078 0.249 0.287 3035.441
λ 1.20 0.854 0.067 -0.345 0.710 0.956 0.075 -0.243 0.525
ρ 1.65 1.172 0.062 -0.477 1.348 1.298 0.081 -0.351 1.037
υ 1.00 1.888 0.177 0.888 2.565 1.617 0.166 0.617 1.615

β1 0.25 1.0725 0.077 0.822 1.088 1.055 0.078 0.805 1.051
WPO β2 0.35 0.570 0.031 0.220 0.203 0.583 0.032 0.233 0.218

β3 0.45 1.401 0.078 0.951 1.761 5469.276 1.392 0.078 0.942 1.737 5337.317
λ 1.20 1.860 0.039 0.660 2.020 1.813 0.037 0.613 1.849
ρ 1.65 1.446 0.028 -0.203 0.631 1.474 0.030 -0.175 0.548

β1 0.25 0.527 0.078 0.839 1.125 1.066 0.078 0.816 1.076
LLPO β2 0.35 1.402 0.030 0.177 0.156 0.536 0.030 0.186 0.166

β3 0.45 0.450 0.079 0.952 1.764 5539.723 1.392 0.078 0.942 1.737 5337.317
λ 1.20 1.408 0.034 0.208 0.543 1.395 0.034 0.195 0.506
ρ 1.65 1.780 0.034 0.130 0.449 1.775 0.034 0.125 0.430

Figure 2: Estimated HRFs of Scenario 1 for the competing baseline HRFs.
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According to the findings of Scenario 2, which are presented in Tables 4 and 5, all competing
models can integrate the decreasingHRF shape. However, based on the AIC, the proposed EWPO
model outperforms the others. It surpasses theWPOandLLPOmodels and the genuine produced
model regarding SE, AB, and MSE.

Table 4: Simulation outcomes for Scenario 2 (Decreasing HRF) with n = 100 and approximately 20% and 30% censoring respectively to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.205 0.359 -0.044 0.020 0.407 0.370 0.157 0.103
EWPO β2 0.35 0.344 0.137 -0.005 0.004 0.384 0.136 0.034 0.025

β3 0.45 0.304 0.359 -0.145 0.110 50.538 0.237 0.363 -0.212 0.146 43.660
λ 0.60 0.156 0.178 -0.443 0.336 0.053 0.088 -0.546 0.357
ρ 0.70 0.432 0.125 -0.267 0.303 0.329 0.101 -0.370 0.382
υ 1.00 1.334 0.718 0.334 0.780 2.209 1.406 1.209 3.880

β1 0.25 1.107 0.350 0.857 1.163 1.147 0.367 0.897 1.254
WPO β2 0.35 0.297 0.132 -0.052 0.034 0.345 0.137 -0.004 0.003

β3 0.45 1.137 0.352 0.687 1.091 133.877 1.234 0.352 0.784 1.320 120.298
λ 0.60 1.302 0.306 0.702 1.337 1.445 0.361 0.845 1.730
ρ 0.70 0.552 0.049 -0.147 0.184 0.540 0.048 -0.159 0.198

β1 0.25 1.115 0.352 0.865 1.182 1.189 0.370 0.939 1.352
LLPO β2 0.35 0.255 0.128 -0.094 0.057 0.310 0.132 -0.039 0.026

β3 0.45 1.116 0.354 0.666 1.043 137.909 1.191 0.354 0.741 1.217 120.339
λ 0.60 0.643 0.180 0.043 0.054 0.677 0.196 0.077 0.099
ρ 0.70 0.674 0.058 -0.025 0.034 0.669 0.058 -0.030 0.041

Table 5: Simulation outcomes for Scenario 2 ( Decreasing HRF) with n = 2000 and approximately 20% and 30% censoring respectively to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.183 0.079 -0.066 0.029 0.184 0.079 -0.065 0.029
EWPO β2 0.35 0.582 0.031 0.232 0.217 0.582 0.031 0.232 0.217

β3 0.45 0.478 0.080 0.028 0.027 1702.950 0.479 0.080 0.029 0.028 1619.241
λ 0.60 0.220 0.048 -0.379 0.311 0.223 0.050 -0.376 0.310
ρ 0.70 0.468 0.028 -0.231 0.270 0.470 0.029 -0.229 0.268
υ 1.00 1.397 0.152 0.397 0.954 1.387 0.156 0.387 0.924

β1 0.25 1.072 0.078 0.822 1.089 1.067 0.078 0.817 1.077
WPO β2 0.35 0.575 0.031 0.225 0.209 0.579 0.031 0.229 0.214

β3 0.45 1.403 0.078 0.954 1.769 3338.996 1.399 0.078 0.949 1.757 3204.628
λ 0.60 1.663 0.081 1.063 2.407 1.636 0.080 1.036 2.319
ρ 0.70 0.618 0.012 -0.081 0.108 0.620 0.012 -0.079 0.105

β1 0.25 1.087 0.078 0.837 1.121 1.081 0.078 0.832 1.108
LLPO β2 0.35 0.528 0.031 0.178 0.156 0.533 0.030 0.183 0.162

β3 0.45 1.400 0.078 0.950 1.758 3413.309 1.394 0.079 0.944 1.742 3271.891
λ 0.60 0.871 0.050 0.271 0.400 0.867 0.050 0.267 0.392
ρ 0.70 0.755 0.015 0.055 0.081 0.754 0.015 0.054 0.079

The results from Scenario 2, detailed in Tables 4 and 5, indicate that all competing models can
accommodate the decreasing HRF shape. However, according to the AIC, the proposed EWPO
model outperforms the others, including the WPO and LLPO models, as well as the actual gen-
erated model, in terms of SE, AB, and MSE. Additionally, our proposed model proves to be the
most suitable option as censoring increases and effectively handles heavy censoring. Figure 3
demonstrates that all models are similarly effective in integrating the decreasing HRF. Moreover,
the EWPO model remains the most appropriate choice when censoring increases, and it makes a
wise decision regarding heavy censoring. Figure 3 illustrates that all the models are equally in-
tegrated into the decreasing HRF. However, in the case of heavy censoring, our proposed model
emerged as the best performer.
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Figure 3: Estimated HRFs of Scenario 2 for the competing baseline HRFs.

Based on the findings presented in Tables 6 and 7, Scenario 3 highlights a significant advantage
of the EWPOmodel. It is the only model consistently delivering the lowest values for SE, AB, and
MSE, even in challenging conditions of heavy censoring and bathtub hazards. This adaptability
is a crucial and essential aspect of our model, which makes it a reliable tool for hazard modeling
in real-world scenarios. As expected, the EWPO model had the least accurate estimates for AB,
SE, and MSE in Scenario 3, further underscoring the superiority of our proposed model. Figure 4
illustrates that only the EWPO model is capable of integrating the bathtub HRF, while the other
models fail to accommodate the bathtub HRF. In this scenario, the EWPO model emerged as the
best performer.

Table 6: Simulation outcomes for Scenario 3 (Bathtub HRF) with n = 100 and approximately 20% and 30% censoring, respectively, to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.004 0.351 0.246 0.062 0.085 0.352 -0.165 0.055
EWPO β2 0.35 0.411 0.135 0.062 0.047 0.395 0.140 0.045 0.034

β3 0.45 0.958 0.351 0.508 0.715 106.678 0.890 0.356 0.440 0.590 57.577
λ 7.00 5.126 1.786 1.874 22.721 4.371 2.588 -2.628 29.888
ρ 4.00 1.970 1.357 2.029 12.116 1.155 1.047 -2.844 14.665
υ 0.08 0.190 0.140 0.110 0.030 0.334 0.327 0.254 0.105

β1 0.25 0.861 0.333 0.611 0.680 0.803 0.338 0.554 0.583
WPO β2 0.35 0.251 0.129 -0.098 0.059 0.339 0.142 -0.011 0.008

β3 0.45 1.671 0.337 1.221 2.593 185.809 1.543 0.339 1.093 2.179 104.078
λ 7.00 11.857 2.634 4.857 91.608 11.628 3.729 4.628 86.214
ρ 4.00 0.505 0.046 -3.494 15.744 0.479 0.048 -3.520 15.770

β1 0.25 0.871 0.334 0.621 0.697 0.815 0.338 0.565 0.602
LLPO β2 0.35 0.227 0.127 -0.122 0.071 0.323 0.141 -0.026 0.018

β3 0.45 1.628 0.339 1.178 2.449 191.001 1.520 0.340 1.071 2.110 106.308
λ 7.00 6.730 1.833 -0.270 3.701 6.942 2.485 -0.057 0.798
ρ 4.00 0.549 0.048 -3.450 15.698 0.515 0.049 -3.484 15.734
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Table 7: Simulation outcomes for Scenario 3 (Bathtub HRF) with n = 2000 and approximately 20% and 30% censoring respectively to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.399 0.076 0.149 0.097 0.402 0.076 0.152 0.099
EWPO β2 0.35 0.580 0.031 0.230 0.215 0.568 0.031 0.218 0.201

β3 0.45 0.693 0.076 0.243 0.279 1692.519 0.708 0.077 0.258 0.300 1146.876
λ 7.00 5.714 0.484 -1.285 16.347 6.0387 0.499 -0.961 12.533
ρ 4.00 2.000 0.267 -2.241 12.906 2.427 0.772 -1.572 10.108
υ 0.08 0.210 0.034 0.130 0.038 0.151 0.049 0.071 0.016

β1 0.25 1.217 0.071 0.967 1.420 1.153 0.073 0.903 1.268
WPO β2 0.35 0.507 0.031 0.157 0.135 0.531 0.032 0.181 0.160

β3 0.45 1.505 0.072 1.055 2.063 3246.712 1.469 0.073 1.019 1.956 2375.638
λ 7.00 14.684 0.852 7.684 166.631 14.081 0.944 7.081 149.300
ρ 4.00 0.493 0.010 -3.506 15.757 0.484 0.010 -3.515 15.765

β1 0.25 0.485 0.073 1.137 1.474 1.158 0.074 0.908 1.280
LLPO β2 0.35 1.490 0.031 0.235 0.173 0.514 0.032 0.165 0.142

β3 0.45 0.450 0.073 1.140 2.098 3361.522 1.463 0.074 1.014 1.940 2462.112
λ 7.00 8.711 0.619 1.712 26.898 8.629 0.678 1.630 25.468
ρ 4.00 0.530 0.010 -3.469 15.718 0.519 0.011 -3.481 15.731

Figure 4: Estimated HRFs of Scenario 3 for the competing baseline HRFs.

The findings in Scenario 4 in Tables 8 and 9 indicate that the EWPOmodel produces estimates
with small AB and MSR values for all regression coefficients. The model produced estimates that
are similar to those of the true model, as indicated by the AIC value. Figure 5 shows that only
the EWPO model can integrate the Unimode HRF, while the other models cannot accommodate
it. Moreover, the proposed EWPO regression model outperforms all competing models, even in
cases of heavy censorship.
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Table 8: Simulation outcomes for Scenario 4 (Unimodel HRF) with n = 100 and approximately 20% and 30% censoring respectively to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.005 0.355 -0.245 0.062 0.108 0.359 -0.142 0.051
EWPO β2 0.35 0.333 0.143 -0.017 0.012 0.461 0.137 0.111 0.090

β3 0.45 0.525 0.357 0.075 0.073 170.626 0.626 0.358 0.176 0.189 131.552
λ 0.00006 0.00001 0.001 0.000 0.000 0.0001 0.001 0.000 0.000
ρ 0.15 0.166 0.075 0.016 0.005 0.168 0.083 0.018 0.006
υ 40.00 36.302 63.611 -3.698 282.130 34.180 62.916 -5.820 431.728

β1 0.25 0.660 0.350 0.410 0.373 0.750 0.360 0.500 0.500
WPO β2 0.35 0.358 0.150 0.008 0.006 0.497 0.143 0.148 0.125

β3 0.45 1.269 0.353 0.820 1.410 296.982 1.266 0.361 0.817 1.403 244.2114
λ 0.00006 2.603 0.634 2.604 6.779 2.436 0.588 2.436 5.9364
ρ 0.15 0.552 0.049 0.402 0.282 0.585 0.053 0.435 0.320

β1 0.25 0.646 0.352 0.397 0.356 0.702 0.362 0.453 0.431
LLPO β2 0.35 0.357 0.148 0.008 0.005 0.490 0.141 0.141 0.118

β3 0.45 1.259 0.357 0.809 1.383 290.939 1.232 0.362 0.782 1.316 238.714
λ 0.00006 1.145 0.314 1.145 1.312 1.110 0.305 1.110 1.233
ρ 0.15 0.716 0.061 0.566 0.491 0.737 0.064 0.588 0.522

Table 9: Simulation outcomes for Scenario 4 (Unimodel HRF) with n = 2000 and approximately 20% and 30% censoring respectively to
compare model performance.

20% Censoring 30% Censoring
Model Parameter True value MLE SE AB MSE AIC MLE SE AB MSE AIC

β1 0.25 0.250 0.080 0.0001 0.0001 0.250 0.080 0.0001 0.0001
EWPO β2 0.35 0.350 0.031 0.0001 0.0001 0.350 0.031 0.0001 0.0001

β3 0.45 0.450 0.080 0.0001 0.0001 4539.585 0.450 0.080 0.0001 0.0001 3871.114
λ 0.00006 0.00003 0.000 0.0001 0.0001 0.00004 0.000 0.0001 0.0001
ρ 0.15 0.150 0.002 0.0001 0.0001 0.150 0.002 0.0001 0.0001
υ 40.00 40.000 1.800 0.0001 0.0001 40.000 1.873 0.0001 0.0001

β1 0.25 1.067 0.078 0.817 1.077 1.036 0.079 0.787 1.012
WPO β2 0.35 0.642 0.033 0.292 0.290 0.635 0.033 0.285 0.281

β3 0.45 1.420 0.079 0.970 1.814 6024.243 1.400 0.080 0.950 1.759 5152.698
λ 0.00006 4.625 0.250 4.625 21.393 3.541 0.183 3.542 12.545
ρ 0.15 0.581 0.012 0.431 0.315 0.634 0.014 0.484 0.380

β1 0.25 1.003 0.079 0.753 0.944 0.983 0.079 0.734 0.906
LLPO β2 0.35 0.640 0.033 0.291 0.288 0.623 0.033 0.274 0.267

β3 0.45 1.350 0.080 0.901 1.622 5824.980 1.338 0.080 0.888 1.588 5041.362
λ 0.00006 1.900 0.118 1.900 3.610 1.722 0.104 1.722 2.966
ρ 0.15 0.744 0.015 0.595 0.532 0.772 0.016 0.623 0.575

Figure 5: Estimated HRFs of Scenario 4 for the competing baseline HRFs.
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7 Survival Analysis to Right-Censored Data

This section provides a comprehensive analysis of two right-censored clinical trial datasets to
demonstrate the effectiveness and practicality of the proposed fully parametric EW-PO regression
model for survival analysis. The EWPO regression model is compared with other PO regression
models, including the generalized log-logistic PO (GLLPO), Weibull PO (WPO), and log-logistic
PO (LLPO)models. The performance of thesemodels is evaluated using two information criteria:
the AIC and the Bayesian information criterion (BIC).

7.1 Dataset 1: IPASS data set

To highlight the significance of the proposed EWPO regression model, we analyze the IPASS
dataset from a randomized clinical trial. This study compared gefitinib and carboplatin-paclitaxel
in terms of progression-free survival for patients with advanced pulmonary adenocarcinoma.

The IPASS dataset is reconstructed and re-published by Mok et al. [17], and it is now avail-
able freely in the AHSurv R package [20]. The reconstructed data set still contains all the features
mentioned in the references, and it is accessible for the clinical trial’s results. The database con-
tains data from March 2006 through April 2008. The trial aims to evaluate the effect of gefitinib
compared to carboplatin-paclitaxel doublet chemotherapy on the progression-free survival (mea-
sured in months) of patients diagnosed with non-small cell lung cancer. According to the trial
protocol, 1, 207 individuals from East Asia with advanced lung adenocarcinoma-who were either
nonsmokers or former light smokers and had not received prior treatment-are randomly assigned
to two groups. The first group comprised 608 patients who are given carboplatin + paclitaxel,
while the second group included 609 patients who were given gefitinib. The dataset shows that
the event of interest occurred 965 times (79.3%), with 449 occurrences (73.7%) in patients who
received gefitinib and 516 (84.9%) in patients who received carboplatin + paclitaxel. The pro-
posed fully parametric EWPO regression model will be applied to the reconstructed IPASS data
to accurately assess the data and estimate the regression coefficients.

Figure 6 displays a concavity pattern in the total time on the test (TTT) plot, indicating the
increasing HR shape of the data. This shows that the TTT, including the histogram, is appropriate
for analyzing this dataset.
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Figure 6: The TTT and histogram plots for the IPASS clinical trial dataset.

Table 10 displays the results of the PO regression models using the IPASS clinical trial data.
Table 10 presents the model parameters, mean, SE, z-values, p-values, and information criterion
values. Figure 7 complements Table 10 by demonstrating the fitted estimate HRFs for different
models. Figure 7 and Table 10 indicate that the EWPO model outperforms all other models in
terms of providing the best fit to the IPASS clinical trial data. This is demonstrated by the lowest
information criterion values for the EWPOmodel. Additionally, the EWPOmodel parameters are
significant at the 5% significance level. Figure 7 shows that the proposed model provides better
fits to the IPASS clinical trial data over time.

Table 10: Findings of each model for IPASS dataset, along with analytical measures for various models.

Model Parameter Mean SE z-value L 95% U 95% p-value AIC BIC

β -0.005 0.105 0.049 -0.211 0.200 0.090 5707.532 5727.949
EWPO λ 5.941 1.410 4.213 3.177 8.706 0.000

ρ 1.077 0.184 5.842 0.716 1.439 0.000
υ 1.433 0.418 3.429 0.614 2.253 0.000

β -0.139 0.103 -0.184 -0.222 0.183 0.085 5710.571 5730.987
GLLPO λ 0.145 0.007 19.161 0.126 0.154 0.000

ρ 1.395 0.064 22.278 1.298 1.549 0.000
υ 0.035 0.020 1.728 -0.005 0.074 0.084

β 0.575 0.103 5.597 0.374 0.777 0.000 6888.596 6903.909
WPO λ 10.641 0.342 31.159 9.972 11.311 0.000

ρ 1.045 0.029 35.734 0.989 1.103 0.000

β 0.615 0.102 6.028 0.415 0.815 0.000 6913.954 6929.267
LLPO λ 7.440 0.265 28.112 6.922 7.960 0.000

ρ 1.306 0.036 36.499 1.236 1.377 0.000
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Figure 7: The estimated HRFs for the competing models based on IPASS data set.

7.2 Data Set 2: Lung cancer dataset

This section analyzes the data set from a clinical investigation as discussed in [14]. This dataset
can be found in the R package survival. The study followed up on 137 lung cancer patients who
are Veterans Administration. The censorship rate in this study is approximately 6.5%, indicating
that nine out of 137 observations were censored. The response variable in this clinical trial is the
time until death (measured in days), while the exploratory factors include the number of months
from diagnosis to study enrollment, age (in years), and treatment type (Treat). The TTT plot
shows that the HRFin Figure 8 has a decreasing shape. We use the EW distribution, which can
accommodate different HR shapes. Figure 8 displays the histogram and TTT plots.

Figure 8: The TTT and histogram plots for survival times of lung cancer dataset.
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Table 11 presents the results of the EWPO regressionmodel alongside other regressionmodels
for the lung cancer dataset. The table displays themodel parameters, mean, SE, z-values, p-values,
and information criterion values. Figure 9 and Table11 indicate that the EWPOmodel is the most
effective in fitting the lung cancer dataset, outperforming all other models. The lowest values
for information criteria show that the proposed model provides the best fit. Additionally, all pa-
rameters of the EWPO model are significant at the 5% significance level. Figure 9 shows that the
proposed model gives better fits to the lung cancer dataset over time.

Figure 9: The estimated HRF shapes of the competing models for lung cancer dataset.

Table 11: Findings of each model for lung cancer data, along with analytical measures for various models.

Model Parameter Mean SE z-value L 95 % U 95 % p-value AIC BIC

β1 0.009 0.013 0.761 -0.016 0.035 0.040 1524.993 1542.513
β2 -1.066 0.299 3.561 -1.653 -0.479 0.000
β3 -0.050 0.008 6.377 -0.066 -0.035 0.000

EWPO λ 1.432 0.957 1.497 -0.444 3.308 0.011
ρ 0.364 0.035 10.407 0.296 0.433 0.000
υ 1.313 0.831 1.581 -0.315 2.942 0.013

β1 -0.064 0.007 9.851 -0.077 -0.052 0.000 1542.570 1560.09
β2 0.456 0.294 1.551 -0.120 1.034 0.012
β3 -0.011 0.014 0.804 -0.040 0.017 0.042

GLLPO λ 0.614 0.056 10.988 0.505 0.724 0.000
ρ 0.747 0.046 16.395 0.659 0.837 0.000
υ 0.356 0.121 2.956 0.120 0.593 0.003

β1 0.069 0.012 5.998 0.047 0.093 0.000 1617.568 1632.168
β2 0.823 0.302 2.723 0.231 1.416 0.019
β3 -0.034 0.007 4.669 -0.049 -0.020 0.018

WPO λ 666.642 147.153 4.530 378.229 955.057 0.000
ρ 1.121 0.093 12.114 0.940 1.303 0.000

β1 -0.064 0.010 6.520 -0.084 -0.045 0.000 2171.097 2185.697
β2 2.667 0.339 7.866 2.003 3.332 0.070
β3 -0.043 0.007 6.219 -0.057 -0.030 0.030

LLPO λ 1.172 0.729 1.609 -0.256 2.600 0.000
ρ 0.076 0.006 12.688 0.065 0.088 0.000
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8 Concluding Remarks

This paper introduces a flexible, fully parametric model for proportional odds regression that
integrates the fundamental shapes of the failure rate through the EW distribution. The proposed
model is referred to as the exponentiated-Weibull proportional odds (EWPO) regression model.
A Monte Carlo simulation study is conducted to assess the model’s performance, and it is ap-
plied to two censored survival datasets. The results indicate that this model outperforms existing
proportional odds models, such as the GLL, Weibull, and log-logistic models, in accurately rep-
resenting both monotonic and nonmonotonic HR functions. The EWPOmodel also demonstrates
good performance, as indicated by the SE, AB, SE, MSE, and RMSE values. The study then ap-
plied the model to two real-world right-censored survival datasets, namely the IPASS dataset and
data from lung cancer patients. The results showed that the EWPO model performes better than
other competing POmodels, indicating significant distributional parameters and regression coef-
ficients. However, the EWPO model has some limitations. It is not suitable for modeling survival
data with crossing survival curves. Additionally, the complexity of the model may lead to overfit-
ting, particularly when the number of parameters is too high relative to the sample size.

In the future, this approach could be expanded to address other event scenarios, including
multi-state and competing risk models. The model could also be adapted for use within Bayesian
frameworks and excess hazard models. Furthermore, future research could explore various cen-
soring strategies, such as left censoring, interval censoring, middle censoring, and double censor-
ing.
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